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ABSTRACT 
 
A Bayesian data analysis to assess the reduction in crash history due to “road diets” in Iowa was 
conducted by the Iowa State University Department of Statistics in cooperation with Iowa 
Department of Transportation Office of Traffic and Safety (TAS).  The study utilized monthly 
crash data and estimated volumes obtained from TAS for 30 sites, 15 treatment and 15 
control, over 23 years (1982-2004).  The sites had volumes ranging from 2,030 to 15,350 during 
that timespan and were largely located in smaller urbanized areas. 
 
The main research objective was to assess whether “road diets” appear to result in crash 
reductions on Iowa roads. To meet the objective we analyzed crash data at each site before and 
after the conversions were completed. Given the random and rare nature of crash events, we fitted 
a hierarchical Poisson model to crashes, where the log mean was expressed as a piece-wise linear 
function of time period, seasonal effects, and a random effect corresponding to each site.  
Estimation of model parameters was conducted within a Bayesian framework.  Results indicate a 
25.2% reduction in crash frequency per mile and an 18.8% reduction in crash rate.  This differs 
from a previous, much publicized study which reported a 6% reduction in crash frequency per 
mile and an insignificant indication for crash rate effects.  The results from the Iowa study fit 
practitioner experience and agree with another Iowa study utilizing a simple before/after approach 
on the same sites. 
 
INTRODUCTION 
 
A  Bayesian data analysis to evaluate the reduction in crash history due to “road diets” in Iowa 
was conducted by the Iowa State University Department of Statistics in cooperation with Iowa 
Department of Transportation Office of Traffic and Safety (TAS) (1).  The study utilized monthly 
crash data and estimated volumes obtained from TAS for 30 sites, 15 treatment (sites 1 through 
15) and 15 control (sites 18 through 32), over 23 years (1982-2004).  The sites had volumes 
ranging from 2,030 to 15,350 during that timespan (1982-2004) and were largely located in 
smaller urbanized areas.  Table 1 displays more detailed site descriptions and the year 2000 city 
populations and traffic volumes.  Further discussion of the data is presented later. 
 
TABLE 1 Site Locations 
 

SID CITY LITERAL CIPOP 
2000 

ADT 
2000 

1 Storm Lake Iowa 7 from Lake Ave. to Lakeshore Dr. 10,076 7,503 
2 Clear Lake US 18 from N 16 St. W to N 8th St. 8,161 10,403 
3 Mason City Iowa 122 from West intersection of Birch Drive to a Driveway 29,172 7,800 
4 Osceola US 34 from Corporate limits on east side to where highway 

divides to 4 lanes on west side 
4,659 8,172 

5 Manchester Iowa 13 from River St. to Butler St. 5,257 9,400 
6 Iowa Falls US 65 from City Limits - ? to Park Ave. 5,193 10,609 
7 Rock Rapids Iowa 9 from S Greene St. to Tama St. 2,573 4,766 
8 Glenwood US 275 from MP 36.2 to MP 37.42 5,358 6,410 
9 Des Moines Beaver Ave from Urbandale Ave. to Aurora Ave. 198,682 13,695 
10 Council Bluffs US 6 from McKenzie Ave. west 1300 ft. 58,268 11,000 
11 Blue Grass Old US 61 from Oak Lane to 400' W of Terrace Drive 1,169 9,155 
12 Sioux Center US 75 from 200' South of 10th St. S. to 250' North of 9th St. NW 6,002 8,942 
13 Indianola Iowa 92 from South R St. to Jct. of US 65/69 12,998 13,288 
14 Lawton US 20 from 100' east of Co. Rd. Eastland Ave. to 1130' West of 

Co. Rd. Emmet Ave. 
697 9,237 



15 Sioux City Transit Ave. from Vine Ave. to just west of Paxton St. at curve 85,013 9,608 
18 Storm Lake Iowa 7 from Lake Ave. to Barton St 10,076 8,790 
19 Le Mars US 75 from 0.01 miles north of 3rd St NW to 0.36 miles SW of 

12th St SW 
9,237 10,880 

20 Cedar Falls Green Hill Road from 0.10 miles east of IA 58 to 0.09 miles west 
of Cedar Heights Dr. 

36,145 2,768 

21 Jefferson Iowa 4 from National Ave to 0.13 miles north of 250th Ave 4,626 5,685 
22 Harlan Iowa 44 from US 59 to 6th St 5,282 6,981 
23 Norwalk Iowa 28 from 0.03 miles south of Gordon Ave to 0.04 miles south 

of North Ave 
6,884 7,679 

24 Belmond US 69 from 0.38 miles north of Main St to 0.58 miles south of 
Main St 

2,560 3,734 

25 Harlan Iowa 44 from US 59 to 6th St 5,282 6,981 
26 Des Moines Hickman Road - 40th Place east to 0.07 miles west of W 18th St 198,682 13,953 
27 Ames 13th Street from 0.09 miles east of Stange Road to 0.07 miles west 

of Crescent Circle Dr. 
50,731 10,711 

28 Mapleton Iowa 141 from 0.02 miles north of Sioux St. to 0.08 miles south of 
Oak St. 

1,322 3,007 

29 Algona US 169 from 0.07 miles south of US 18 to 0.23 miles south of 
Irvington Rd. 

5,741 7,263 

30 Oskaloosa Iowa 92 from 0.12 miles east of IA 432 to 0.07 miles west of 
Hillcrest Dr 

10,938 11,143 

31 Merrill US 75 from 0.05 miles north of 2nd St to 0.18 miles north of 
Jackson St 

754 7,774 

32 Sioux City S. Lakeport from 4th Ave to Lincoln Way 85,013 15,333 
 
The main goal of the study was to assess the before/after impacts of “road diets” in Iowa. Given 
the random and rare nature of crash events, the monthly nature of the data, and apparent seasonal 
effects on the number of crashes, a hierarchical Poisson model where the log mean was expressed 
as a piece-wise linear function of time period, seasonal effects, and a random effect 
corresponding to each site was fitted to the crash frequencies. We adopted a Bayesian approach 
for estimating model parameters and drawing inferences. 
 
Results indicate a 25.2% reduction in crash frequency per mile and an 18.8% reduction in crash 
rate.  This differs from a previous, much publicized study (2,3,4) which reported a 6% reduction 
in crash frequency per mile and an insignificant indication for crash rate effects.  The results from 
the Iowa study fit practitioner experience and agree with another Iowa study utilizing a simple 
before/after approach on the same sites (5). 
 
LITERATURE REVIEW 
 
“Road diets” have been implemented for numerous years.  The earliest “road diet” for our study 
was completed in 1993.  Another source mentions road diets in the mid-1970s and the 1980s (6).  
Despite this, very little formal research has been conducted on the safety impacts of “road diets”, 
the most notable being relatively recent (2,3,4).  However, several studies have mentioned the 
operational impacts of “road diets”.  A review of these studies can be found by referencing Knapp 
(7).  The general consensus of these studies agree that under most average daily traffic (ADT) 
conditions tested, “road diets” have minimal effects on vehicle capacity, because left-turning 
vehicles are moved into a common two-way left-turn lane.  However, if road diets are used for 
the roads with ADTs above approximately 20,000 vehicles, there is a high probability that traffic 
congestion will increase to the point of diverting traffic to alternate routes (2,3,4).  An Iowa study 
for one site found that the 85th percentile free flow speed reduced 4 or 5 mph and the percentage 



of vehicles traveling more than 5 mph over the speed limit dropped by 30 percent after 
implementation of the four-lane to three-lane conversion (8). 
 
Figure 1 (2,3,4) shows an example “road diet”, implemented by reallocating the existing space, 
while leaving the overall area unchanged (2,3,4). 

 

 
 

FIGURE 1 Example Road Diet (2,3,4). 
 
“Road diets” offer potential benefits to both vehicles and pedestrians. On a four-lane street, 
drivers change lanes to pass slower vehicles (such as vehicles stopped in the left lane waiting to 
make a left turn). In contrast, drivers' speeds on two-lane streets are limited by the speed of the 
lead vehicle. Thus, road diets may reduce vehicle speeds and vehicle interactions during lane 
changes, which potentially could reduce the number and severity of vehicle-to-vehicle crashes. 
Pedestrians may benefit because they have fewer lanes of traffic to cross, and because motor 
vehicles are likely to be moving more slowly (2,3,4).  
 
The use of Bayesian approaches to highway safety research began with the introduction of 
empirical Bayes (EB) into the field by Hauer and colleagues.  Since then, much research using 
EB has emerged (9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29) and EB has 
become a mainstream for researchers, to the point where two recent syntheses (30,31) have 
discussed the approach and two software FHWA efforts, the Interactive Highway Safety Design 
Module (IHSDM) and the Comprehensive Highway Safety Improvement Model 
(CHSIM)/SafetyAnalyst, are primarily based on EB principals (26).  The current Highway Safety 
Manual (HSM) development effort (32) utilizes much EB research as a basis.  Hauer’s 1997 book 
directly addressed before/after studies, comparing the EB approach to the classical naïve and 
classical comparison-group methods (23).  Clearly, EB is at the forefront for traffic safety 
research and will be for years. 
 
However, comparatively recently, full Bayesian (FB) approaches have begun to be explored by 
traffic safety researchers.  Beginning with computer and methodological advances in the early 
1990s, the feasibility of full Bayesian applications began to be explored for transportation-related 
research (33,34).  More recently, full Bayesian applications have emerged within highway safety 



research (35,36,37,38,39,40,41,42,43,44,45,46).  Much like EB, FB is gaining wider acceptance 
throughout the highway safety community; however, broad application of the approach may be 
years away as modeling techniques are explored and refined.  Based on previous and ongoing FB-
related work within Iowa (40), we chose the FB approach as the basis for our analysis of Iowa 
“road diet” experience. 
 
Some of the FB literature mentions comparisons with EB; however, in the main they touch lightly 
upon the issue.  Our choice of FB was based on prior Iowa experience applying the FB approach.  
As the objective of this research was not to compare EB to FB, we refer interested readers to a 
widely distributed whitepaper by Carriquiry and Pawlovich (47) available at 
http://www.dot.state.ia.us/crashanalysis/eb_fb_comparison.htm. 
 
FURTHER SITE AND DATA DESCRIPTION 
 
Shown in Table 2 as COMPYEAR, each treatment site had different known intervention dates; 
therefore, the number of before and after crash records varied from site to site as the available 
data ranged in date from 1982-2004.  The crash data and volume data for each site were obtained 
on a monthly basis from 1982-2004, except for site 20 which wasn’t constructed until 1993.  To 
obtain the crash data, visual inspection of the available data were made within a Geographic 
Information System (GIS) and those crashes appearing along the road were exported to file.  The 
volume data were obtained similarly by beginning with visual selection of the sites within a GIS 
and export to file.  TAS has 6 years (2001-2003) of roadway inventory data, which includes 
traffic volumes, available and factors available to estimate earlier yearly volumes.  Other factors 
exist to estimate monthly volumes by type of facility.  These monthly volume data for the 23 
years were estimated for each site using custom SAS (SAS Institute Inc., Cary, NC) code to apply 
these factors.  The lengths for the sites were derived directly from the GIS-based mapping.  Later, 
additional custom SAS code was used to parse the crash data by month, merge these data with the 
volume data, and develop a consolidated database for all locations. 
 
Individual control sites were matched to each treatment site to provide a control sample similar to 
the treatment sample; these matches are shown in Table 2 using columns SID (the site ID) and 
YID (the paired ID).  The treatment sites are indicated by having 3 lanes, as opposed to 4 for the 
control sites. 
 
TABLE 2 Site Descriptive Information 
 

SID YID ROUTE LANES LENGTH COMPYEAR 
1 18 IA 7 3 1.41 1993 
2 19 US 18 3 1.51 2003 
3 20 IA 122 3 1.78 2001 
4 21 US 34 3 2.04 2001 
5 22 IA 13 3 0.35 2001 
6 23 US 65 3 1.23 2002 
7 24 IA 9 3 0.35 1998 
8 25 US 275 3 1.09 1998 
9 26 Local 3 1.19 1999 

10 27 US 6 3 0.20 2000 
11 28 Local 3 0.72 1999 
12 29 US 75 3 1.52 1999 
13 30 IA 92 3 1.57 1999 
14 31 US 20 3 0.64 2000 



15 32 Local 3 0.77 2000 
18 1 IA 7 4 0.71 1993 
19 2 US 75 4 1.80 2003 
20 3 Local 4 1.80 2001 
21 4 IA 4 4 2.40 2001 
22 5&8 IA 44 4 1.20 2001 
23 6 IA 28 4 0.80 2002 
24 7 US 69 4 0.90 1998 
25 5&8 IA 44 4 1.20 1998 
26 9 Local 4 1.50 1999 
27 10 Local 4 0.33 2000 
28 11 IA 141 4 0.70 1999 
29 12 US 169 4 2.00 1999 
30 13 IA 92 4 1.50 1999 
31 14 US 75 4 0.50 2000 
32 15 Local 4 1.20 2000 

 
Figure 2 below shows the monthly crash density at two of the paired study sites. The y-axis is 
number of crashes and the x-axis is month.  The vertical line in each plot marks the time at which 
the intervention was completed.  In the plot corresponding to the matched control site (site 26), 
the vertical line was placed at the month during which the intervention was completed at the 
treatment site.  The solid line in each graph is a smooth estimate of the number of crashes over 
time for each site.  The smooth curve was obtained by fitting a non-parametric local polynomial 
regression with optimal bandwidth (48).  We fitted the non-parametric regression model to 
explore the form of the Poisson regression to be fitted in later analyses. Because the length of the 
site varied across sites (from a low of 0.24 miles to a high of 2.53 miles) the number of monthly 
crashes is not strictly comparable across sites in the graphs presented in Figure 2. 
 

 

 
 
FIGURE 2 Observed and Smoothed Estimated Monthly Crash Density For a Sample Pair 
of Sites. 
 



Figure 3 explores the potential differences between treated and control sites for the example pair 
of sites.  The plot has three curves: the monthly crash rate (crashes/HMVMT) for treated sites, the 
monthly crash rate at control sites, and the difference in monthly crash rate between the control 
and the treated sites (monthly crash rate of treated group – monthly crash rate of control group, 
solid green line).  In this graph, the green line represents the difference in crash rate between 
treatment and control sites for each month. It appears that the difference is negative more often 
after intervention than before.  And, the general trend of the site-specific crash frequency, now, is 
clear from the plots. 
 

 
 
FIGURE 3 Monthly Crash Rate and Difference in Monthly Crash Rate for a Sample Pair of 
Sites. 
 
In general, as shown by example in Figure 2, both treatment and control site crash history can be 
seen to experience a reduction.  However, the reduction in treatment site crash density and 
rate after intervention are significantly more marked than at the comparison sites (see Figure 2 for 
density and Figure 3 for rate).  This differs from a previous 4-lane to 3-lane study (2,3,4), recently 
published in an ITE Journal, whose data, even from a descriptive statistics standpoint, indicated 
very little reduction or difference between the two groups.  Additionally, because monthly 
crash densities were used for analysis, it was possible to account for the seasonality effects on 
crashes, which should be expected given the seasonal weather patterns in Iowa. 
 
MODELING 
 
Given the random and rare nature of crash events, a hierarchical Poisson model where the log 
mean rate was expressed as a function of time period, seasonal effects, and a random effect 
corresponding to each site included was fitted to the crash frequencies.   
 



We first assume that monthly crashes are distributed as Poisson random variables with mean 
equal to rate times MADT, where MADT is the monthly volume and rate is the number of 
crashes at the site during a month divided by volume.  Often, the Poisson mean is then modeled 
as a Gamma random variable (e.g., Hauer and Persaud (9)).  The Poisson-Gamma model has been 
shown to fit crash data well, but does not easily lend itself to accounting for the potential effect of 
covariates such as time, season and month of conversion on crash frequency.  
 
Here, we adopt a more general model that allows us to estimate and account for the effect of time, 
conversion month and season on log crash rate.  In the second stage of the model we then let the 
log rate be a piecewise linear function of time, where the change-point (or point where the linear 
segments join) is located at the month of completion of the intervention in treatment sites.  For 
comparison sites, we located the change-point at the same month as we did in the corresponding 
paired treatment site.   
 
The monthly crash data clearly showed seasonal effects, as would be expected in Iowa.  We 
defined four seasons: winter (December, January and February), Spring (March, April and May), 
Summer (June, July and August) and Fall (September, October and November).  To account for 
seasonality in crash rate, we included three smoothly evolving cyclical functions of season with 
different period and frequency, to capture the smooth and repeating seasonal trends. 
 
Finally, because sites in the study represent a random sample of similar sites in Iowa, a random 
effect corresponding to site was also included in the model for log crash rate.  The random effect 
was assumed to be normally distributed with mean zero and unknown variance representing the 
between-site variability in crash rates. 
 
The use of a piece-wise model, sometimes also known as a change point model, to analyze 
before/after studies has not yet received much attention in the traffic safety literature.  Essentially, 
a change point model assumes that the evolution of crash rates over time before the completion of 
the intervention is different from the evolution after intervention.  Inspection of the observed 
crash frequencies suggests that crash rates have decreased at the study sites over the past several 
years.  The change-point model allows us to quantify the differences in the slopes of log crash 
rate on time before and after the conversion.  Because some sites were treated and some were not, 
we included different before and after slopes for treated and comparison sites.  
 
We adopted a fully Bayesian approach (49,40) to estimate model parameters.  In the Bayesian 
approach, model parameters are treated as random variables and the goal is to estimate the 
distribution of likely values of the parameters given prior and data information.  The 
approach differs from classical methods in that distributions of likely values, rather than point 
estimates and standard errors of parameters are obtained, and in that all results are conditional on 
the sample at hand.  One other fundamental difference between the classical and the Bayesian 
approaches to estimation is that prior information about model parameters can be combined with 
information contained in the sample to draw inferences.  This is not possible within the classical 
framework.  The EB approach (23) is a special case in the Bayesian paradigm where prior 
distributions are partially based on the sample.  The distribution of likely values of model 
parameters on which all inferences are based is known as the joint posterior distribution.  
 
To conduct a Bayesian analysis, we must choose prior distributions for all parameters at the third 
level of the model.  We used proper, semi-conjugate but diffuse priors for two reasons.  First, 
proper priors guarantee that the joint posterior distribution will be integrable.  By letting the 
priors be non-informative (or almost non-informative) we let the data “speak for themselves”.  In 
this study, the number of observations available for each site, as well as the number of sites was 



large enough to assume that the priors will have little if any influence on the posterior 
distribution.  We chose normal prior distributions for all regression coefficients in the log crash 
rate model, with mean zero and large variance, reflecting the belief that a priori none of the 
covariates in the model may be associated to the log crash rate.  Prior uncertainty about this value 
is large since the prior variance for the regression coefficients was fixed at 1,000.  The between-
site variance was assumed to be independent of the regression coefficients a priori and was 
associated to a scaled-inverted chi-squared distribution.  The prior expected value of the inverse 
between-site variance was assumed to be 1and its prior variance was set at 100 to reflect lack of 
precise knowledge.  
 
PARAMETER ESTIMATION 
 
We estimated the posterior distributions of the parameters in the model and of functions of model 
parameters using Markov chain Monte Carlo (MCMC) methods and the freeware WinBUGS (50, 
51).  For each parameter, we ran two parallel chains over 200,000 iterations.  Each chain was 
burned at iteration 100,001, and to avoid autocorrelation of the parameter draws, we thinned the 
chains, keeping every 100th draw for inference.  We monitored convergence of the chains using 
the Gelman-Rubin statistic (52) and also checked the autocorrelation functions.  That is, we 
obtained 2,000 almost independent draws from the marginal posterior distributions of each 
parameter in the model.   
 
Monte Carlo estimates of quantities of interest including means, standard deviation, and various 
percentiles of the marginal posterior distribution of each parameter were obtained from the draws.  
For example, posterior means were estimated as the averages of parameter draws over the 2,000 
iterations.  Similarly, posterior standard deviations are estimated as the empirical standard 
deviations of draws over the 2,000 iterations. 
 
To assess the effect of the four-lane to three-lane conversion we compared log crash rates in the 
before and the after periods in treatment and comparison sites.  To do so, we had to compute the 
marginal posterior distributions of linear combinations of the regression coefficients in the model.  
One advantage of implementing a Bayesian analysis using MCMC methods is that posterior 
distributions of functions of model parameters can be readily computed from the draws.  
 
RESULTS 
 
Overall, results indicate a 25.2 percent (23.2% - 27.8%) reduction in crash frequency per mile and 
an 18.8 percent (17.9% - 20.0%) reduction in crash rate over the 15 treatment sites when 
compared with the control sites.  The values in parenthesis are the posterior 2.5th and 97.5th 
percentiles of the appropriate distributions and constitute a central 95% credible set.  That is, with 
95% probability, the true reduction in crash frequency per mile is between 23.2% and 27.8%, for 
example.  These results are supported visually by Figures 4 and 5. 
 
Figure 4 shows, for an example pair of sites, the posterior mean of the expected yearly crash 
density and the 2.5th and 97.5th percentiles of the posterior distribution of crash frequency.  The 
solid vertical lines on each plot mark the year of completion of the intervention at the treated 
sites.  
 



 
 
FIGURE 4: Posterior Mean and 95% Credible Set of the Expected Crash Frequency per 
Year and Mile for Each Site in the Study. Years Preceding the Completion of the 
Intervention are to the Left of the Vertical Line in  
Each Plot. 
 
From Figure 4, we see that there was an estimated reduction in crash density at these sites.  The 
reduction appears to be more pronounced at the treatment site.  Notice that the 95% credible sets 
for expected crash frequencies are in general rather narrow.  Thus, we are confident that site-
specific expected annual crash frequency per mile is estimated with a good degree of confidence. 
 
We also computed the posterior distribution of expected annual crash densities for all treated and 
all control sites over the years preceding and following the intervention.  The four posterior 
distributions are shown in Figure 5.  From Figure 5, note that while the expected annual crash 
density has decreased at all sites, the reduction is significantly more pronounced at sites that 
underwent the conversion.  The posterior distributions shown in Figure 5 are narrow, indicating 
that the posterior mean is a reliable summary of the distribution of likely values of expected crash 
frequencies. 
 

 



 
 
FIGURE 5 Posterior Distributions of the Average (Across Treated and Control Sites) 
Expected Annual Crash Frequencies per Mile During the Years Preceding and Following 
the Completion of the Intervention. 
 
Note also that in the control group, the two posterior distributions overlap somewhat, indicating 
that the reduction in crash density in the after period, while noticeable, is not overwhelming.  In 
contrast, the posterior distribution of average expected crashes per mile after intervention is 
shifted significantly relative to the distribution estimated for the period preceding the conversion. 
 
The overall 25 percent and 19 percent results differ from the Huang study (2,3,4) which reported 
a 6 percent reduction in crash frequency per mile and an insignificant indication for crash rate 
effects.  This difference is evident just by comparing the raw data from the two studies.  The Iowa 
data, when graphed, indicates marked reductions whereas the Huang data indicate very little 
difference.  Based on these Iowa FB results and results from a simple before/after analysis done 
as part of a separate causal study, we are comfortable with the 25 percent and 19 percent 
reductions, especially as they fit practitioner expectations.  A previous study on the same sites by 
the Iowa State University-based Center for Transportation Research and Education (CTRE) 
which utilized a simple before/after method with comparison groups indicated a 24 percent 
reduction in crash frequency due to “road diet” implementation (5).  This CTRE study also 
determined that injury crashes were reduced 34 percent and reductions in crash involvement by 
younger and older drivers. 
 
Other benefits shown from a previous internal Iowa study on speeds, travel times, and delays on 
the Sioux Center conversion during AM and PM peak periods, indicate a 4-5 mph reduction in 
85th percentile free flow speed and a 30-point reduction in percentage of vehicles traveling more 
than 5 mph over the speed limit (i.e., vehicles traveling 35 mph or higher) (7,8). 
 
DISCUSSION 
 
The differences between our analysis and the analysis performed by Huang (2,3,4) are several and 
may explain the diverging results. 
 
First, even the descriptive analysis of the “raw” data suggests that the effect of conversion in 
Iowa roads was much more dramatic than in the roads considered in the Huang study.  Though 



we adopted a Bayesian approach throughout, a classical analysis could have been conducted and 
would have resulted in similar point estimates for model parameters. However, a classical analyst 
would have encountered some difficulties in estimating the variances of parameter estimates in 
the nonlinear model and would have had to resort to asymptotic approximations.  
 
Second, Huang fitted an ordinary linear regression model to the expected crash frequencies, 
meaning that a single slope for expected frequency on time was assumed for the entire study 
period.  We extended the model and allowed for different slopes during the “before” and the 
“after” periods explicitly by including a change-point in the model and for the interaction of 
treatment and slope.  Notice that as a result, our model allows for a slight increase in crash 
frequency during the months immediately preceding the conversion and also during those months 
immediately following the conversion. 
 
We fitted a hierarchical Poisson regression model to the crash frequency observed at each site.  
The log monthly crash rate per mile at each site was then modeled using a piecewise linear 
regression model with a change-point.  The independent variables (or explanatory variables) in 
the change-point regression included the effects of the four seasons of the year, treatment, time 
and interactions of treatment and time.  To estimate the association between log monthly crash 
rates and the explanatory variables, we added a random effect to account for overdispersion and 
for autocorrelation among observations obtained at the same site.  We used proper but non-
informative priors for all parameters in the model, and carried out all calculations using Markov 
chain Monte Carlo methods implemented in WinBUGS.  Our model permits accounting for 
temporal variation in traffic volume (e.g., Hauer (23)) and also for the effect of season on crash 
frequency. 
 
Finally, we included a longer time series of crash frequencies as we included 23 years of data on 
almost all sites in the study.  By analyzing monthly data, we were also able to account for 
seasonal variability in crash frequency and traffic volume; while a “must” in Iowa, where 
seasonal variation in driving conditions is marked, this may not be as critical in a study conducted 
in the northwestern region of the country.  Huang’s study, though it began with 12 treatment sites 
and 25 control sites was reduced to 8 treatment sites and 14 control sites for the crash rate 
analysis due to unavailability of data.  Additionally, Huang utilized only 3 years of data for both 
the before and after period. 
 
One potential improvement to our analysis might be the inclusion of a “buffer” period around the 
time of conversion of the site during which drivers get used to the new layout of the road.  Huang 
(2,3,4) accounted for this effect by ignoring crashes that occurred around the time of conversion.  
We included all crashes in our analysis and attempted to account for the potential impact of the 
conversion itself with a model parameter.  It may be better to proceed as in Huang (2,3,4) and 
remove crash information around the conversion time from the analysis dataset.  We do not 
anticipate noticeable differences in our results even if we re-analyze the data omitting some of the 
monthly crash records.  
 
FUTURE RESEARCH 
 
Further investigations of the topic of “road diet” implementations within Iowa from a FB 
viewpoint are planned.  Much as the CTRE study investigated causal factors, injury severity 
impacts, and age-related impacts using a simple before/after methodology, these same categories 
will be approached from an FB viewpoint.  Additionally, another researcher had requested these 
data for an NCHRP effort.  This researcher was planning to apply an EB approach to the data. 
 



Further applications of the FB approach to Iowa data are planned.  Iowa has also converted 
several 2-lane sites to 3-lane sites over the past 25 years.  Utilizing an approach similar to the 
“road diet” application, the impacts of these treatments will be similarly investigated.  
Additionally, Iowa has numerous advanced stop sign rumble strips placed throughout the state.  
We plan to investigate the potential reduction in types of crashes that might result from 
installation of these rumble strips. 
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